
Unit 0 - Numerical Computation 1

Unit 0

Numerical Computation

Unit 0 - Numerical Computation 2

Numerical computation

• digital representation of numbers

• floating point arithmetic

• implications for routine calculations

• sources of error

• introduction to Matlab

Unit 0 - Numerical Computation 3

Integers

• binary representation
– a bit is 0 or 1

– 8 bits = 1 byte

– 2 bytes = hex digit

• 2710 = 24 + 23 + 21 + 20 = [0001 1011]2 = [1B]16

• integers have an exact binary representation

• typical implementation allocates 16 bit integer size

• 32 bit integers also available

Unit 0 - Numerical Computation 4

Integers

• limitation on unsigned 16 bit integer magnitude is 216 = 65536

• how to store negative integers without a sign bit?

– use twos complement notation

– to represent a negative value complement all the bits and add one

– equivalently [for n bits] subtract all values from 2n before storing

• range of [-32768,32767] for integers

– one representation is required for zero so asymmetric

Unit 0 - Numerical Computation 5

Non-integers

• scientific notation: 1234.56 = 1.23456 E+03

– sign +

– mantissa (significand) 1.23456

– exponent +3

• floating point representation allocates a fixed number of bits to
each non-integer

• requires a convention on how the bits are used for sign,
mantissa, and exponent

• a normalized binary FPV could have a mantissa of 0 or 1 by
convention

Unit 0 - Numerical Computation 6

Non-integers

• a single precision floating point number

– 32 bits = 1 sign bit + 23bit mantissa + 8bit exponent

• a double precision floating point number

– 64 bits = 1 sign bit + 52bit mantissa + 11bit exponent

• a normalized binary FPV assumes the mantissa always
represents a fixed decimal location

– one convention is use 1.bbbbb

– first digit is the J-bit and can be assumed

• Matlab default: all calculations use double precision floating
point arithmetic

– exact integer arithmetic is also available

Unit 0 - Numerical Computation 7

Non-integers

• floating point mantissa is expressed in powers of 1/2

– (1/2)0 = 1 not used [fixed J-bit assumed]

– (1/2)1 = 0.5

– (1/2)2 = 0.25

– (1/2)3 = 0.125

– (1/2)4 = 0.0625

• to find the binary representation for a decimal number

– subtract successive powers of 1/2 until reduced to zero or you run
out of bits

– 0.812510 = 0.5 + 0.25 + 0.0625 = (1/2)1+ (1/2)2 +(1/2)4 = [0.1101]2

Unit 0 - Numerical Computation 8

Roundoff

• many [most] exact decimal mantissas cannot be represented
exactly as binary mantissas

– example 0.1 = [0.000110011...]2
• exact floating point representation is only possible for

– integers less than 252 or

– numbers with 15 [decimal] bit mantissa an exact sum of 1/2 powers

• all other decimal real numbers must be represented in binary as
approximations

• the limited number of mantissa bits limits precision = number of
significant bits in the approximation

– the floating point number line is full of holes.....

– eps ~ 2.2204!10-16 is smallest machine value so that 1.0+eps is
different from 1.0 [called machine precision]

Unit 0 - Numerical Computation 9

Overflow and underflow

• the number of exponent bits limits upper and lower floating point
magnitudes

• how to represent the exponent sign?

– add a bias value to exponents

– single precision adds 127=27-1 bias

– double precision adds 1023=210-1 bias

• largest exponent possible is 1023

• so largest floating point magnitude is about 21023 ~ 8.99!10307

• special values are used to represent maximum and minimum
floating point numbers for a given computer design

– realmax ~ 10308

– realmin ~ 10-308

Unit 0 - Numerical Computation 10

Overflow and underflow

• floating point values < realmin cause underflow

– handled differently according to computer design

– may be replaced by zero

– some computers use denormalized FPVs to handle some
underflow values

– mantissa bits are lost so precision is reduced

• floating point values > realmax cause overflow

– often replaced by a special value called infinity

• special machine values can be used in calculations with the
anticipated results

• all the above applies by symmetry to negative floating point
numbers as well

Unit 0 - Numerical Computation 11

The floating point number line

Unit 0 - Numerical Computation 12

Floating point arithmetic

• limited range and precision of floating point numerical values
has implications for routine calculation

• result of an arithmetic operation on two FPVs might not be
representable as an FPV

• rounding error can lead to unrecoverable loss of significant bits

Unit 0 - Numerical Computation 13

Floating point arithmetic: bad things to avoid

• effects of roundoff errors accumulate slowly but....

• catastrophic cancellation error is

– caused by a single operation when...

– ...subtracting two nearly equal values or

– ...adding two very different values

– critical loss of significant digits can occur in routine calculations

• roundoff cannot be avoided so the solution is to improve the
algorithms

• computer calculations are not necessarily organized in the same
order as hand calculations

– re-arranged quadratic formula

– nested evaluation of polynomial expressions

Unit 0 - Numerical Computation 14

Floating point arithmetic: another implication

• floating point numbers that are supposed to be equal may not
be equal due to roundoff

• so floating point comparisons should always involve ‘close
enough’ and NEVER ‘equals’

• how is ‘close enough’ quantified?

Unit 0 - Numerical Computation 15

Close enough?

• xT is the true value of a quantity x and

• xA is a computed value of x

• two approaches to quantifying error....

• the absolute error is

error(xA) = xT - xA

• the relative error is

rel(xA) = (xT - xA) / xT

• when comparing two FPVs ask: ‘is |x-y| < tol?

– the tolerance may be chosen to be absolute or relative according to
problem specifics

Unit 0 - Numerical Computation 16

Comparing sin x and x

Unit 0 - Numerical Computation 17

Truncation error

• terminating an iteration process results in a truncation error or
discretization error

• fT = fA + truncation error

• caused by the algorithm not the computer

• size of truncation error in evaluating f(x) depends on x and the
number of terms used

– e.g. for large x the Taylor series for sin x converges more slowly
than for x ~ 0

• both roundoff and truncation errors are present in numerical
calculations

Unit 0 - Numerical Computation 18

Truncation vs roundoff error

• series expansion of f(x) = ex

• Tk = xk/k!

• Sk = Sk-1 +Tk

• what happens when the series is terminated after k terms?

• Matlab example:

– expseriesplot(x,tol,k) plots abs error |Sk - exp(x)|

– |x| >> 1 abs error increases first as numerator terms grow more
slowly than the factorial

– for x = -10 factorial begins to dominate the error at 10 terms

– truncation error decreases with increasing number of terms

– eventually you get caught by roundoff error when you reach
eps....no further change in Sk

Unit 0 - Numerical Computation 19

Truncation vs roundoff error
Roundoff error dominates Truncation error dominates

Evaluation of f"(x) using finite differences; f(x) = exp(x)

