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Numerical computation

« digital representation of numbers

+ floating point arithmetic

+ implications for routine calculations
+ sources of error

* introduction to Matlab
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Integers

binary representation

— abitisOor1

— 8bits = 1 byte

— 2 bytes = hex digit

27,,=24+ 23+ 21+ 20 =[0001 1011],=[1B]4g
integers have an exact binary representation
typical implementation allocates 16 bit integer size
32 bit integers also available
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Integers

« limitation on unsigned 16 bit integer magnitude is 26 = 65536
« how to store negative integers without a sign bit?
— use twos complement notation
— to represent a negative value complement all the bits and add one
— equivalently [for n bits] subtract all values from 2" before storing
* range of [-32768,32767] for integers
— one representation is required for zero so asymmetric
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Non-integers

scientific notation: 1234.56 = 1.23456 E+03

- sign+

— mantissa (significand) 1.23456

— exponent +3
floating point representation allocates a fixed number of bits to
each non-integer

requires a convention on how the bits are used for sign,
mantissa, and exponent

a normalized binary FPV could have a mantissa of 0 or 1 by
convention
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Non-integers

« asingle precision floating point number
— 32 bits = 1 sign bit + 23bit mantissa + 8bit exponent
* adouble precision floating point number
— 64 bits = 1 sign bit + 52bit mantissa + 11bit exponent
* anormalized binary FPV assumes the mantissa always
represents a fixed decimal location
— one convention is use 1.bbbbb
— first digit is the J-bit and can be assumed
» Matlab default: all calculations use double precision floating
point arithmetic
— exact integer arithmetic is also available
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Non-integers

« floating point mantissa is expressed in powers of 1/2
— (1/2)° =1 not used [fixed J-bit assumed]
- (1/2)'=05
- (1/22=0.25
- (1/22=0.125
- (1/2)* = 0.0625
« to find the binary representation for a decimal number

— subtract successive powers of 1/2 until reduced to zero or you run
out of bits
— 0.8125,,=0.5+0.25 + 0.0625 = (1/2)"+ (1/2)2+(1/2)*=[0.1101],
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Roundoff

many [most] exact decimal mantissas cannot be represented
exactly as binary mantissas

— example 0.1 =[0.000110011...],
exact floating point representation is only possible for

— integers less than 252 or

— numbers with 15 [decimal] bit mantissa an exact sum of 1/2 powers
all other decimal real numbers must be represented in binary as
approximations
the limited number of mantissa bits limits precision = number of
significant bits in the approximation

— the floating point number line is full of holes.....

— eps ~2.2204x10'8 is smallest machine value so that 1.0+eps is

different from 1.0 [called machine precision]

Unit 0 - Numerical Computation 8

Overflow and underflow

« the number of exponent bits limits upper and lower floating point
magnitudes
» how to represent the exponent sign?
— add a bias value to exponents
— single precision adds 127=27-1 bias
— double precision adds 1023=210-1 bias
« largest exponent possible is 1023
« so largest floating point magnitude is about 21923 ~ 8.99x10307
* special values are used to represent maximum and minimum
floating point numbers for a given computer design
— realmax ~ 10308
— realmin ~ 10-308
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Overflow and underflow

floating point values < realmin cause underflow
— handled differently according to computer design
— may be replaced by zero

— some computers use denormalized FPVs to handle some
underflow values

— mantissa bits are lost so precision is reduced
floating point values > realmax cause overflow

— often replaced by a special value called infinity
special machine values can be used in calculations with the
anticipated results

all the above applies by symmetry to negative floating point
numbers as well
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The floating point number line
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Floating point arithmetic

limited range and precision of floating point numerical values
has implications for routine calculation

result of an arithmetic operation on two FPVs might not be
representable as an FPV

rounding error can lead to unrecoverable loss of significant bits
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Floating point arithmetic: bad things to avoid

« effects of roundoff errors accumulate slowly but....
« catastrophic cancellation error is
— caused by a single operation when...
— ...subtracting two nearly equal values or
— ...adding two very different values
— critical loss of significant digits can occur in routine calculations
« roundoff cannot be avoided so the solution is to improve the
algorithms
« computer calculations are not necessarily organized in the same
order as hand calculations
— re-arranged quadratic formula
— nested evaluation of polynomial expressions
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Floating point arithmetic: another implication

floating point numbers that are supposed to be equal may not
be equal due to roundoff

so floating point comparisons should always involve ‘close
enough’ and NEVER ‘equals’

how is ‘close enough’ quantified?
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Close enough?

* Xgis the true value of a quantity x and
* Xalis a computed value of x
« two approaches to quantifying error....
« the absolute erroris

error(X,) = Xr - Xa
« the relative erroris

rel(xa) = (X - Xa) / Xg

* when comparing two FPVs ask: ‘is |x-y| < tol?

— the tolerance may be chosen to be absolute or relative according to
problem specifics
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Comparing sin x and x
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Truncation error

« terminating an iteration process results in a fruncation error or
discretization error

« f;=f, + truncation error
« caused by the algorithm not the computer

 size of truncation error in evaluating f(x) depends on x and the
number of terms used

— e.g. for large x the Taylor series for sin x converges more slowly
than for x ~0

* both roundoff and truncation errors are present in numerical
calculations
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Truncation vs roundoff error

series expansion of f(x) = e*
T, = x/k!
S, =S4 +Ty
what happens when the series is terminated after k terms?
Matlab example:
— expseriesplot(x,tol k) plots abs error |S, - exp(x)|
— |x| >> 1 abs error increases first as numerator terms grow more
slowly than the factorial
— for x = -10 factorial begins to dominate the error at 10 terms
— truncation error decreases with increasing number of terms

— eventually you get caught by roundoff error when you reach
eps....no further change in S,

Unit 0 - Numerical Computation 18




Truncation vs roundoff error

Roundoff error dominates Truncation error dominates
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Evaluation of f'(x) using finite differences; f(x) = exp(x)
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