

Numerical computation

- digital representation of numbers
- floating point arithmetic
- implications for routine calculations
- sources of error
- introduction to Matlab

Integers

- binary representation

Integers

- a bit is 0 or 1
-8 bits $=1$ byte
-2 bytes $=$ hex digit
- $27_{10}=2^{4}+2^{3}+2^{1}+2^{0}=[00011011]_{2}=[1 \mathrm{~B}]_{16}$
- integers have an exact binary representation
- typical implementation allocates 16 bit integer size
- 32 bit integers also available

Non-integers

- scientific notation: $1234.56=1.23456 \mathrm{E}+03$
- sign +
- mantissa (significand) 1.23456
- exponent +3
- floating point representation allocates a fixed number of bits to each non-integer
- requires a convention on how the bits are used for sign, mantissa, and exponent
- a normalized binary FPV could have a mantissa of 0 or 1 by convention

Non-integers

- a single precision floating point number
-32 bits $=1$ sign bit +23 bit mantissa +8 bit exponent
- a double precision floating point number
-64 bits $=1$ sign bit +52 bit mantissa +11 bit exponent
- a normalized binary FPV assumes the mantissa always represents a fixed decimal location
- one convention is use $1 . \mathrm{bbbbb}$
- first digit is the J-bit and can be assumed
- Matlab default: all calculations use double precision floating point arithmetic
- exact integer arithmetic is also available

Non-integers

- floating point mantissa is expressed in powers of $1 / 2$
- $(1 / 2)^{0}=1$ not used [fixed J-bit assumed]
- $(1 / 2)^{1}=0.5$
$-(1 / 2)^{2}=0.25$
- $(1 / 2)^{3}=0.125$
- $(1 / 2)^{4}=0.0625$
- to find the binary representation for a decimal number
- subtract successive powers of $1 / 2$ until reduced to zero or you run out of bits
$-0.8125_{10}=0.5+0.25+0.0625=(1 / 2)^{1}+(1 / 2)^{2}+(1 / 2)^{4}=[0.1101]_{2}$

Roundoff

- many [most] exact decimal mantissas cannot be represented exactly as binary mantissas
- example $0.1=[0.000110011 \ldots]_{2}$
- exact floating point representation is only possible for
- integers less than 2^{52} or
- numbers with 15 [decimal] bit mantissa an exact sum of $1 / 2$ powers
- all other decimal real numbers must be represented in binary as approximations
- the limited number of mantissa bits limits precision = number of significant bits in the approximation
- the floating point number line is full of holes....
- eps $\sim 2.2204 \times 10^{-16}$ is smallest machine value so that $1.0+$ eps is different from 1.0 [called machine precision]

Overflow and underflow

- the number of exponent bits limits upper and lower floating point magnitudes
- how to represent the exponent sign?
- add a bias value to exponents
- single precision adds $127=2^{7}-1$ bias
- double precision adds 1023=2 ${ }^{10}-1$ bias
- largest exponent possible is 1023
- so largest floating point magnitude is about $2^{1023} \sim 8.99 \times 10^{307}$
- special values are used to represent maximum and minimum floating point numbers for a given computer design
- realmax $\sim 10^{308}$
- realmin $\sim 10^{-308}$

Overflow and underflow

- floating point values < realmin cause underflow
- handled differently according to computer design
- may be replaced by zero
- some computers use denormalized FPVs to handle some underflow values
- mantissa bits are lost so precision is reduced
- floating point values > realmax cause overflow - often replaced by a special value called infinity
- special machine values can be used in calculations with the anticipated results
- all the above applies by symmetry to negative floating point numbers as well

The floating point number line

Floating point arithmetic: bad things to avoid

- effects of roundoff errors accumulate slowly but....
- catastrophic cancellation error is
- caused by a single operation when...
- ...subtracting two nearly equal values or
- ...adding two very different values
- critical loss of significant digits can occur in routine calculations
- roundoff cannot be avoided so the solution is to improve the algorithms
- computer calculations are not necessarily organized in the same order as hand calculations
- re-arranged quadratic formula
- nested evaluation of polynomial expressions

Floating point arithmetic: another implication

- floating point numbers that are supposed to be equal may not be equal due to roundoff
- so floating point comparisons should always involve 'close enough' and NEVER 'equals'
- how is 'close enough' quantified?

Close enough?

- x_{T} is the true value of a quantity x and
- x_{A} is a computed value of x
- two approaches to quantifying error....
- the absolute error is

$$
\operatorname{error}\left(x_{A}\right)=x_{T}-x_{A}
$$

- the relative error is

$$
\operatorname{rel}\left(x_{A}\right)=\left(x_{T}-x_{A}\right) / x_{T}
$$

- when comparing two FPVs ask: 'is $|x-y|<$ tol?
- the tolerance may be chosen to be absolute or relative according to problem specifics

Unit 0 - Numerical Computation

Truncation error

- terminating an iteration process results in a truncation error or discretization error
- $f_{T}=f_{A}+$ truncation error
- caused by the algorithm not the computer
- size of truncation error in evaluating $f(x)$ depends on x and the number of terms used
- e.g. for large x the Taylor series for $\sin \mathrm{x}$ converges more slowly than for $\mathrm{x} \sim 0$
- both roundoff and truncation errors are present in numerical calculations

Truncation vs roundoff error

- series expansion of $f(x)=e^{x}$
- $T_{k}=x^{k} / k$!
- $\mathrm{S}_{\mathrm{k}}=\mathrm{S}_{\mathrm{k}-1}+\mathrm{T}_{\mathrm{k}}$
- what happens when the series is terminated after k terms?
- Matlab example:
- expseriesplot(x, tol, k) plots abs error $\left|\mathrm{S}_{\mathrm{k}}-\exp (\mathrm{x})\right|$
- $|x| \gg 1$ abs error increases first as numerator terms grow more slowly than the factorial
- for $x=-10$ factorial begins to dominate the error at 10 terms
- truncation error decreases with increasing number of terms
- eventually you get caught by roundoff error when you reach eps....no further change in S_{k}

Truncation vs roundoff error

Roundoff error dominates

 Truncation error dominates

Evaluation of $f^{\prime}(x)$ using finite differences; $f(x)=\exp (x)$
Unit 0-Numerical Computation

